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ABSTRACT
Though machine learning has been applied to the foreign exchange 
market for algorithmic trading for quiet some time now, and neural 
networks(NN) have  been shown to yield  positive results,  in  most 
modern  approaches  the NN systems  are  optimized  through 
traditional  methods  like  the  backpropagation  algorithm  for 
example, and their input signals  are price lists, and lists composed 
of  other  technical indicator  elements.  The  aim  of  this  paper  is 
twofold: the presentation and testing of the application of topology 
and weight evolving artificial neural network (TWEANN) systems  
to automated currency trading, and to demonstrate the performance 
when using Forex chart  images as input  to geometrical  regularity 
aware indirectly encoded neural network systems,  enabling them to 
use the patterns & trends within, when trading. This paper presents 
the  benchmark  results  of  NN based  automated  currency  trading 
systems evolved using TWEANNs, and compares the performance 
and generalization capabilities  of these direct encoded  NNs which 
use the standard  sliding-window based price vector inputs, and the 
indirect  (substrate)  encoded  NNs which  use  charts as  input.  The 
TWEANN  algorithm  I  will  use  in  this  paper  to evolve  these 
currency trading agents is the memetic algorithm based TWEANN 
system called Deus Ex Neural Network (DXNN) platform.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence – 
Learning, Connectionism and neural nets.

General Terms
Algorithms

Keywords
Neural Network, TWEANN, Evolutionary Computation, 
Neuroevolution, Memetic Algorithm, Artificial Life, 
Financial Analysis, Forex.

1. INTRODUCTION

oreign exchange (also known as Forex, or FX) is a global and 
decentralized  financial  market  for  currency  trading.  It  is  the 

largest  financial  market,  with  a  daily  turnover  of  4  trillion  US 
dollars. The spot market, specializing in the immediate exchange of  
currencies,  comprises  almost  40%  of  all  FX  transactions,  1.5 
trillion dollars daily. Because the foreign exchange market is open 
24 hours a day, closing  only  for the weekend, and because of the  

F

enormous daily volume, there are no sudden interday price changes,  
and there are no lags in the market, unlike in the stock market. This 
paper  presents  the  first  of  its  kind,  an  introduction,  discussion, 
analysis,  and application/benchmarking (to the author's knowledge) 
of  a  topology  and  weight  evolving  neural  network  (TWEANN) 
algorithm for the evolution of  geometry-pattern sensitive, substrate 
encoded trading  agents that  use the actual  closing  price charts  as 
input. In this paper I will compare the Price Chart Input (PCI) using 
neural network (NN) based traders using substrate encoding, to the 
standard,  direct encoded NN based trading agents  which use Price 
List  Input  (PLI),  in  which  the  time  series  of  closing  prices  is  
encoded  as  a  list  of  said  prices.  Finally,  all  of  these  NN based 
trading agents will  be evolved using  the memetic algorithm based 
TWEANN system called Deus Ex Neural Network (DXNN)[1,2]. It  
must be noted that it is not the goal of this paper to compare one  
TWEANN using  PCI to  another  TWEANN using  PCI.  The use of  
DXNN system for  this  experiment  and this  paper  was due to  the  
ease with which it  was possible  to apply  it  to the given problem.  
The only goal of this paper is to demonstrate the utility of this new  
method,  the use  of  candle-stick  style  chart  as  direct  input  to  the  
geometry  sensitive  NN system evolved  using  a TWEANN system.  

The use of  TWEANNs in the financial  market  has  thus  far  been 
very seldom, and to this author's knowledge, the three most general  
of  these  state  of  the  art  neuroevolutionary  algorithms  (DXNN, 
NEAT[3], HyperNEAT[6], EANT[4], EANT2[5]) have not yet been 
thoroughly tested, benchmarked, and applied within this field.

In this paper I will not use the evolved NN based agents to predict  
currency pair prices,  but instead evolve  autonomously trading  NN 
based  agents.  Neural  networks  have  shown  time  and  time  again 
[7,8,9,10,11,12,13,14]  that  due  to  their  highly  robust  nature,  and 
universal function approximation qualities, that they fit well in the  
application  to  financial  market  analysis.  In  published literature 
though[15,17,18,19,20],  the  most  commonly  used  neural  network 
learning  algorithm  is  backpropagation.  This  algorithm,  being  a 
local  optimization  algorithm,  can  and  does  at  times  get  stuck  in  
local optima. Furthermore, it is usually necessary for the researcher 
to set up the NN topology beforehand, and since the knowledge of 
what type of NN topology works best for which dataset and market 
is very difficult,  or even impossible to deduce, one usually has to  
randomly  create  NN  topologies  and  then  try  them  out  before  
settling  down  on some  particular  system.  TWEANN systems  are 
relatively  new,  and  they  have  not  yet  been  tested  thoroughly  in 
financial markets. But it is exactly these types of systems that can  
evolve  not only synaptic weights, but also the NN topologies, and 
thus perform  a  global  search,  evolving  the  most  optimal  NN 
topology and synaptic weights at the same time. The use of such a 
TWEANN system  in  evolving  NN based  traders  is  exactly  what 
will be explored in this paper.

Outline:  In  Section-2  I  will  briefly  discuss  Foreign  Exchange 
market,  the  various  market  hypothesis,  and  the  approaches  that 
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currency traders use to make their decisions. Section-3 will discuss 
how to use candlestick charts themselves as inputs to the NN based 
systems, and how to use substrate  encoding[6]  so that  the NNs are 
sensitive to geometrical patterns present in these charts. In Section-
4 I  will  introduce  the  memetic  TWEANN system  called  DXNN, 
and discuss its various features and applicability to price prediction 
and automated trading, and how it will be used to evolve the direct  
and indirect encoded NN based currency trading agents. In Section-
5 I will explain the benchmark setup for the testing of the PCI and 
PLI  using  NNs,  and  how  I  will  gage  fitness  and  generalization 
abilities  of  the  evolved  agents.  In  Section-6  I  will  present  and 
discuss the benchmark results. Finally, in Section-7 I will conclude 
this paper with a summary, conclusions drawn, and proposed future 
work.

2. FOREIGN EXCHANGE MARKET

The foreign exchange market, or Forex, is a global, fully 
distributed, currency trading financial market. Unlike the stock 
market where a single buyer or seller with enough capital can 
dramatically change the price of the stock, the forex market is 
much too vast and distributed for any currency pair to be so easily 
affected. Furthermore, the fact that currencies can be traded non 
stop, 24 hours a day, 5 days a week, there are a lot fewer spaces in 
the data stream where news might be aggregating but no technical 
data is available. Because of these factors, there is a greater chance 
that the pricing data does indeed represent the incorporated news 
and fundamental factors, which might thus allow for prediction and 
trend finding through the use of machine learning approaches.

The question of predicting future market prices of a stock, or 
currency pairs as is the case in this paper, has been a controversial 
one, especially when using machine learning. There are two main 
market hypothesis which state that such predictions should be 
impossible. These two market hypothesis are the Efficient Market  
Hypothesis (EMH), and the Random Walk Theory (RWT).

The EMH states that the prices fully reflect all the available 
information, and that all new information is instantly absorbed into 
the price, thus it is impossible to make profits in the market since 
the prices already reflect the true price of the traded financial  
instrument. The RWT on the other hand states that historical data 
has no affect on pricing, and that the future price of a financial 
instrument is completely random, independent of the past, and thus 
it can not be predicted from it. Yet we know that profit is made by 
the financial institutions and independent traders in the existing 
markets, and that not every individual and institution participating 
in the trading of a financial instrument has all the available 
information immediately at his disposal when making those trades. 
Thus it can not be true that EMH and RWT fully apply in a non 
ideal system representing the real world markets. Therefore, with a 
smart enough system, some level of prediction above a mere coin 
toss, is possible.

There are two general approaches to market speculation, the 
technical and the fundamental. Technical analysis is based on the 
hypothesis that all reactions of the market to all the news, is 
contained within the price of the financial instrument. Thus past 
prices can be studied for trends, and used to make predictions of 
future prices due to the price data containing all the needed 
information about the market and the news that drives it. The 
fundamental analysis group on the other hand concentrates on news 
and events. The fundamental analyst peruses the news which cause 
the prices, he analyzes supply & demand, and other factors, with 
the general goal of acting on this information before others do, and 
before the news is incorporated into the price. In general of course,  
almost every trader uses a combination of both, with the best 
results being achieved when both of these analysis approaches are 

combined. Nevertheless, in this paper our NN systems will 
primarily concentrate only on the raw closing price data. Though in 
the future, the use of neuroevolution for news mining is a definite  
possibility, and research in this area is already in the works.

3. CREATING A GEOMETRICAL REGULARITY AWARE NEURAL NETWORK

Neural Networks have seen a lot of use and success in the financial 
market[17,18,19,20]. One of the main strengths of NN systems, 
which makes them so popular as market predictors, is that they are 
naturally non linear, and can learn non linear data correlation and 
mapping. Artificial neural networks are also data driven, can be on-
line-trained, are adaptive and can be easily retrained when the 
markets shift, and finally, they deal well with data that has some 
errors; neural networks are robust.

When traders look at the financial data they do not usually look just 
at raw price lists, when a trader performs a time series analysis he 
instead looks at the chart patterns. This is especially the case when 
dealing with a trader prescribing to the technical analysis approach. 
The technical analyst uses the various technical indicators to look 
for patterns and emerging trends in these charts. There are many 
recurrent patterns within the charts, some of which have been given 
names, like for example the “head and shoulders” in which the time 
series has 3 hills, resembling head and shoulders. Other such 
patterns are the “cup and handle”, the “double tops and bottoms”, 
the “triangles”... Each of these geometrical patterns has a meaning 
to a trader, and is used by the trader to make predictions about the 
market. Whether these patterns really do have a meaning or not, is 
under debate. It is possible that the fact that so many traders do use 
these techniques, results in a self fulfilling prophecy, where a large 
number of the traders act similarly when encountering similar  
geometrical chart patterns, thus making that pattern and its 
consequence a reality, by all acting in a similar manner that is 
proscribed by the trend predicting rule of that pattern. 

The standard neural networks used for price prediction, trend 
prediction, or automated trading, primarily use the sliding window 
approach, as shown in Fig-3.1, where the data is fed as a vector, a 
price list, to the NN. This vector, whether it holds only the 
historical price data, or also various other technical indicators, does 
not show these existing geometrical chart patterns which are used 
by the traders. If the NN does not have a direct access to the 
geometrical patterns used by human traders, it is at a disadvantage 
because it does not have all the information on which the other 
traders base their decisions.

But how do we allow the NN to have access to this geometrical 
pattern data, and also be able to actually use it? We can not simply 
convert these charts to bitmaps and feed them to the NN, because 
the bitmap encoded chart will still be just a long vector, and the NN 
will not only have to deal with an input with high dimensionality 

Fig-3.1 Sliding window (moving price list) based input
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(dependent on the resolution of the bitmap), but also there would 
really be no connection between this input vector and the actual 
geometrical properties of the chart that could be exploited.
A recently popularized indirect NN encoding approach that has 
been actively used in computer vision, and which has a natural  
property of taking geometrical properties of the input data into 
consideration, is the substrate (also known as hypercube) encoded 
NN system popularized by the HyperNEAT[6] implementation. In 
the substrate encoded NNs, the inputs and outputs are not fed 
directly to the neural network, but instead are fed into a substrate,  
in which the embedded neurodes (each possessing a coordinate) 
processes the signals and produces the outputs, as shown in Fig-3.2.

As shown in the above figure, a substrate is a hypercube of 
neurodes, and though in the above figure the dimensionality is 3, it 
can be anything. Each neurode in one layer is connected in a 
feedforward fashion to the neurodes in the next layer, plane, cube, 
or hypercube, depending on the dimensionality of the entire 
substrate. All dimensions of the substrate have a cartesian 
coordinate, and the length of each side of the substrate is 
normalized such that the coordinates for each axis are between -1 
and 1. The substrate is impregnated with neurodes, with the number 
of neurodes per dimension is set by the researcher, with each 
neurode having a coordinate based on its location in its substrate. 
With this setup, the weight that each neurode has for the 
presynaptic connection with other neurodes is then determined by 
the neural network to whom the substrate belongs. It is the neural 
network that calculates the synaptic weights for the connected 
neurodes based on the coordinates of those neurodes. The and pre 
and post-synaptic neurode coordinates are used as input to the NN. 
Because the NNs deal with coordinates, with the actual data input 
sent to the substrate, the substrate encoded NN system is aware of 
the geometric regularities within the input. And it is these 
geometric regularities that technical analysis tries to find and 
exploit.

With this type of indirect encoded neural network we can analyze 
the price charts directly, making use of the geometrical patterns, 
and trends within. Because each neurode in the substrate receives a 
connection from every neurode or input element in the preceding 
hyper-layer, the chart that is fed to the substrate must first be 
reconstructed to the resolution that still retains the important 
geometrical information, and yet is computationally viable as input. 
For example, if the sliding chart that is fed to the substrate is 
1000x1000, which represents 1000 historical points (horizontal 
axis), with the resolution of the price data being (MaxPlotPrice – 
MinPlotPrice)/1000 (the vertical axis), then each neurode in the 
first hyperplane of the substrate will have 1000000 inputs. If the 
substrate has three dimensions, and we set it up such that the input 
signals are plane encoded and located at Z = -1, with a 10X10 

neurons in the first neurode plane located at Z = 0, and 1X1 
neurons in the third plane located at Z=1 (as shown in Fig-3.3), 
then each of the 100 neurons at Z = 0 receives 1000000 inputs, so 
each has 1000000 synaptic weights, and for this feedforward 
substrate to process a single input signal would require it 
100*1000000 + 1*100 calculations, where the 1*100 calculations 
are performed by the neuron at Z = 1, which is the output neuron of 
the substrate. This means that there would be roughly 100000000 
calculations per single input, per single processing price chart.

Thus it is important to determine and test what resolution provides 
enough geometrical detail to allow for prediction to be made, yet 
not overwhelm the NN itself and the processing power available to 
the researcher. Once the length of the historical prices (horizontal  
axis on the price chart) and the resolution of the prices (vertical 
axis on the price chart) are agreed upon, the chart can then be 
generated for the sliding window of currency pair prices, producing 
the sliding chart. For example, Fig-3.4A shows a single frame of 
the chart whose horizontal and vertical resolution is 100 and 20 
respectively, for the EUR/USD closing prices taken at 15 minute 
time-frame (pricing intervals). This means that the chart is able to 
capture 100 historical prices, from N to N-99, where N is the 
current price, and N-99 is the price (99*15)min ago. Thus, if for 
example this chart's highest price was $3.00 and the lowest price 
was $2.50, and we use a vertical resolution of 20, the minimum 
discernible price difference (the vertical of the pixel) is (3-2.5)/20 = 
$0.025. For comparison, Fig-3.4B shows a10x10 chart resolution.

Similar to Fig-3.3, in Fig-3.4 the pixels of the background gray are 
given a value of -1, the dark gray have a value of 0, and the black a 
value of 1. These candlestick charts, though of low resolution, 
retain most of the geometrical regularities and high/low pricing 
info of the original plot, with the fidelity increasing with the 
recreated chart's resolution. It is this input plane that can be fed to 
the substrate.
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A. The recreated closing 
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resolution for comparison.

Fig-3.4 A. and  B.  show  a  100x20  and  10x10  resolution based  charts 
respectively, using the candle-stick charting style.
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4. DEUS EX NEURAL NETWORK PLATFORM

The topology and the synaptic weights of the neural networks need 
to be set and optimized for the tasks the NNs are applied to. One of 
the strongest approaches to the optimization of synaptic weights 
and their topologies is through the application of evolutionary 
algorithms. The systems that evolve both the topology and the 
synaptic weights of neural networks are called Topology and 
Weight Evolving Artificial Neural Networks (TWEANN). DXNN 
is a memetic algorithm based TWEANN system, and is the 
algorithm I will use to evolve the NN based currency trading agents 
in this paper. In this section we will briefly discuss DXNN's various 
features, and what makes it different from other TWEANNs.

4.1 THE MEMETIC APPROACH TO SYNAPTIC WEIGHT OPTIMIZATION

The standard genetic algorithm performs global and local search in 
a single phase. A memetic algorithm separates these two searches 
into separate stages. When it comes to neural networks, the global 
search is the optimization and evolution of the NN topology, while 
the local search is the optimization of the synaptic weights.

Based on the benchmarks, and ALife performance of DXNN[1], the 
memetic approach has shown to be highly efficient and agile. The 
primary benefit of separating the two search phases is due to the 
importance of finding the right synaptic weights for a particular 
topology before considering that topology to be unfit. In standard 
TWEANNs, a system might generate an optimal topology for the 
problem, but because during that one innovation of the new 
topology the synaptic weights make the topology ineffective, the 
new NN topology is discarded. Also, in most TWEANNs, the 
synaptic weight perturbations are applied indiscriminately to all 
neurons of the NN, thus if for example a NN is composed of 1 
million neurons, and a new neuron is added, the synaptic weight 
mutations might be applied to any of the now existing 1000001 
neurons... making the probability of optimizing the new and the 
right neuron and its synaptic weights, very low. The DXNN 
platform evolves a new NN topology, and then through the 
application of an augmented stochastic search with random restarts  
optimizes the recently added synaptic weights for that topology. 
Thus when the “tuning phase”, as is the local search phase is called 
in the DXNN platform, has completed, the tuned NN has roughly 
the best set of synaptic weights for its particular topological 
architecture, and thus the fitness that is given to the NN is a more 
accurate representation of that NN's true potential. Furthermore,  
because the synaptic weight optimization through perturbation is 
not applied to all the neurons indiscriminately throughout the NN, 
but instead is concentrated on the newly mutated, augmented, or 
mutationally affected neurons, the tuning phase optimizes the new 
additions to the NN, making those new elements work with the 
existing, already evolved and proven architecture. Combined 
together, the DXNN's approach to neuroevolution tends to produce 
a more efficient and concise NN systems. The benchmarks in paper 
[1] demonstrated it to rapidly evolve neurocontrollers for agents in 
the ALife simulation, which gives hope that this neuroevolutionary 
system is also powerful enough to produce positive results in this 
application, and is the reason DXNN was chosen for this paper.

4.2 THE DXNN NEUROEVOLUTIONARY PROCESS

The DXNN evolutionary algorithm performs the following steps:
1. Create a seed population of topologically minimalistic 

NN genotypes.
2. Do:

1. Convert the genotypes to phenotypes.
2. Do for every NN (Apply parametric tuning):

1. Test the fitness of the NN system.
2. Optimize the synaptic weights through the 

application of synaptic weight tuning (An 

augmented version of stochastic hill-climbing 
algorithm).

 Until: The fitness has failed to increased K 
     number of times.

3. Convert the NN system back to its genotype, 
with the tuned synaptic weights, and its fitness score.

3.   After all the NNs have been given a fitness score, 
sort the NN agents in the population based on their 
fitness score, which is further weighted based on the NN 
size, such that smaller sized NNs are given priority.
4. Delete the bottom 50% of the population.
5. For each NN, calculate the total number of N 

offspring that it is alloted to produce, where N is 
proportional to the NN's fitness as compared to the 
average fitness of the population, and average NN 
size, where the smaller and more fit NNs are 
allowed to create more offspring.

6. Create the offspring by first cloning the fit parent, 
and then applying to the clone T number of 
mutation operators, where T is randomly chosen to 
be between 1 and sqrt(Parent_TotNeurons), with 
uniform probability. Larger NNs will produce 
offspring which have a chance to be produced 
through a larger number of applied mutation 
operators.

7. Compose the new population from the fit parents 
and their offspring.

Until: Termination condition is reached (Max number 
of evaluations, time, or goal fitness).

What in the DXNN is referred to as a “tuning phase” is the local 
search phase of the algorithm, which as noted is an augmented 
stochastic search algorithm. The topological mutation phase, by 
randomly choosing the number of mutation operators to use when 
producing offspring by applying the said mutation operators to the 
clones of the fit parents, allows for a high variability of topological 
mutants to be created, improving the diversity of the population. 
The DXNN system uses the following list of mutation operators:

1. Add new neuron.
2. Splice two neurons (choose 2 connected neurons, 

disconnect them, and then reconnect them through a 
newly created neuron. This also increases the depth of the 
NN).

3. Add an output connection to a randomly selected neuron, 
recurrent or feedforward.

4. Add an input connection to a randomly selected neuron.
5. Add a sensor
6. Add an actuator

Thus through mutation operators 5 and 6, the offspring might  
incorporate into itself new and still unused sensors and actuators, if 
those are available in the list of sensors and actuators for its 
specie/population. Indeed this particular part of the DXNN acts as a 
natural feature selection, and is especially useful for complex 
problems, in robotics, and alife simulations. In alife in particular,  
as was shown in [1], the organisms were able to evolve and 
integrate new sensors over time. This can also be used in robotics,  
letting evolution decide what sensors and actuators are most useful  
to the evolving individual. But more importantly, this can be used 
in evolving algorithmic trades, where Sensors can represent the 
different types of technical indicators.

Furthermore, DXNN evolves both, direct and indirect (substrate in 
this case) encoded NNs. Where its substrate encoded NNs further 
differ in their ability to evolve different types of coordinate based 
preprocessors, which is hoped to allow it to deal with a more varied 
number of geometrical features, and was another reason for 
choosing it in this experiment. A further elaboration on this is 
discussed next. 
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4.3 DIRECT AND INDIRECT ENCODING

The DXNN platform evolves both direct and indirect encoded NN 
systems. The direct encoded NN systems were discussed in the 
above sections, the indirect encoded NNs use substrate encoding. 
Since it is the substrate that accepts inputs from the environment 
and outputs signals to the outside world, and the NN is used to set 
the synaptic weights between the neurodes in the substrate, the 
system not only has a set of sensors and actuators as in the standard 
NN system, but also a set of “coordinate_preprocessors” and 
“coordinate_postprocessors”, that are integrated into the NN during 
evolution in a similar manner that it integrates new sensors and 
actuators, only using the “add_coord_preprocessor” and 
“add_coord_postprocessor” mutation operators.

In the standard substrate encoded NN system, the NN is given an 
input that is a vector composed of the coordinates of the neurode 
for which the synaptic weight must be generated, and the 
coordinates of the presynaptic neurode which connects to it. In 
DXNN, there are many different types of coordinate_preprocessors 
and coordinate_postprocessors available. The 
coordinate_preprocessors calculate values from the coordinates 
passed before feeding the resulting vector signals to the NN. The 
coordinate_postprocessors post process the NN's output, adding 
plasticity and other modifications provided by the particular 
substrate_actuator incorporated into the system through evolution.

Wheres HyperNEAT which popularized substrate encoding, feeds 
the CPNN (a NN that uses tanh, and other types of activation 
functions) simply the coordinates of the presynaptic and 
postsynaptic neurodes, and in some variants the distance between 
the neurodes, the DXNN uses the following list of 
coordinate_preprocessors. All of these are available to the substrate 
encoded NNs in this paper, and can be integrated and used by the 
substrate encoded NN as it evolves:

1. Cartesian Coordinates
2. Cartesian Distance
3. Convert to Polar (if substrate is a plane)
4. Convert to Spherical (if substrate is a cube)
5. Centripetal distance of neurode
6. Distance between coordinates
7. Gaussian processed distance between coordinates

This set of substrate sensors further allow the evolved NN to 
extract geometrical patterns and information from inputs. Also, 
DXNN allows the evolved neurons to use the following list of 
activation functions: [tanh,gaussian,sin,absolute,sgn,linear,log,  
sqrt], whether those neurons are used by standard direct encoded 
NNs, or NNs used to calculate weights for the substrate encoded 
systems. Which the creator of DXNN hopes will further improve 
the generality of the evolve NN systems, and has indeed shown 
benefit when evolving standard neurocontrollers for the double-
pole balancing benchmark, in which the problems were solved 
faster by NNs that used sinusoidal activation functions.

5. THE EXPERIMENTAL SETUP

The 2 goals of this paper is to test the applicability and 
effectiveness of TWEANN systems in the evolution of automated 
currency trading NN based agents, and the testing and comparison 
of the effectiveness/profitability and  generalization properties of 
the Price List Input (PLI) based NNs, and the Price Chart Input 
(PCI) used by geometrical pattern aware substrate encoded NNs. 
The hypothesis is that the PCI NNs will have much more 
information (Actual geometrical properties of the chart, including 
the relative pricing) than the standard PLI based NNs, which do not 
have access to the geometrical properties of the charts.

For this benchmark I created a forex market simulator, where each 
interfacing NN will be given a $300 starting balance. Each agent 
produces an output, with the output being further converted to – 1 if 
its less than -0.5, 0 if between -0.5 and 0.5, and 1 if greater than 
0.5. When interacting with the forex simulator, -1 means go short, 0 
means close position (or do nothing if no position open), and 1 
means go long (if currently shorting, then close the position, and 
then go long). The Forex simulator will simulate the market using 
1000 real EURUSD currency pair closing prices, stretching from 
2009-11-5-22:15 to 2009-11-20-10:15, with 15 min time frame 
(each closing price is 15 minutes from the other). The simulator 
uses a price spread of $0.00015.This 1000 point dataset is split into 
the training set, and into a testing/generalization set. The training 
set is the first 800 time steps, ranging from: 2009-11-5-22:15 to 
2009:11-18-8:15, and the testing/generalization data set is the 
immediately following 200 time steps from 2009-11-18-8:15 to 
2009-11-20-10:15. Finally, when opening a position, it is always 
done with $100, leveraged by x50 to $5000 (due to the use of a flat 
spread and buy/sell slots, the results can be scaled).

A single evaluation of a NN is counted if the NN based agent has 
went through all the 800 data points, or if its balance dips below 
$100. The fitness of the NN is its networth at the end its evaluation.  
Each evolutionary run lasts for 25000 evaluations, and each 
experiment is composed of 10 such evolutionary runs. In each 
experiment the population size was set to 10. Finally, in every 
experiment the NNs were allowed to use and integrate through 
evolution the following set of activation functions: [tanh, gaussian,  
sin, absolute, sgn, linear, log, sqrt]. The remainder of the 
parameters were set to the values recommended in [1].

In the experiments performed, the NNs used price sliding window 
vectors (for direct encoded NNs), and price charts (for recurrent 
substrate encoded NNs) as shown in Fig-5.1. The NNs were also 
connected to a sensor which fed them the vector signal: 
[Position,Entry,PercentageChange], where Position takes the value 
of either -1 (currently shorting), 0 (no position), or 1 (currently 
going long), Entry is the price at which the position was entered (or 
set to 0 if no position is held), and PercentageChange is the 
percentage change in the position since entry.

In this paper I present 13 benchmarks/experiments, each 
experiment is composed of 10 evolutionary runs from which its 
average/max/min are calculated. The experiments demonstrate and 
compare the performance of PCI based NNs and the PLI based 
NNs. Both these input type experiments were tested with different 
sensors of comparable dimensionality.

• 5 PLI experiments:
Experiments 1-5 were performed using with PLI NNs. Each 
experiment differed in the resolution of the sliding window input 
the NNs used. Each NN started with the sliding window sensor, and 
the vector: [Position, Entry, PercentageChange]. The networks were 
allowed to evolve recurrent connections. These 5 experiments are:
1. [SlidingWindow5] 2. [SlidingWindow10] 4. [SlidingWindow20] 
4. [SlidingWindow50] 5. [SlidingWindow100]

• 8 PCI experiments:
Experiments 6-13 were preformed using the PCI NNs. In these 
experiments each PCI based NN used a 4 dimensional substrate. 
The input hyperlayer to the substrate was composed of the price 
chart, the vector: [CurrentPosition, EntryPrice, PercentageChange],  
and the substrate's own output, making the substrate Jordan 
Recurrent. The substrate architecture of these CPI NN based 
agents is shown in Fig-5.1. The reason for using Jordan Recurrent 
substrates is due to the fact that standard feedforward substrates 
which do not have recurrent connections, though achieving high 
fitness during training, did not generalize almost at all during my 
preliminary experimentation, with the highest achieved balance 
during generalization testing phases being $303 (a $3 profit), but 
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usually dipping below $250 (a $50 loss) during most evolutionary 
runs. Thus for the PCI based NNs, I created a 4 dimensional 
substrate (the 4th dimension was called K) with an input hyperplane 
composed of the noted 3 planes and located at K = -1, all of which 
connected to the 5X5 hidden plane positioned at K = 0, which then 
further connected to the 1X1 output plane (a single neurode) 
located at K = 1, which output the short/hold/long signal and which 
was also fed back to the substrate's input hyperplane. Each of the 10 
experiments used price chart inputs of differing resolutions:
1. [ChartPlane5X10], 2. [ChartPlane5X20] 3. [ChartPlane10X10] 
4. [ChartPlane10X20] 5. [ChartPlane20X10] 6. [ChartPlane20X20]
7. [ChartPlane50X10] 8. [ChartPlane50X20].

To test generalization abilities of the evolved NN based agents,  
every 500 evaluations the best NN in the population at that time is 
applied to the 200 data point generalization test. Performing the 
generalization tests consistently throughout the evolution of the 
population not only tests the generalization ability of the best NN in 
the population, but also builds a plot of the general generalization 
capabilities of that particular encoding and sensor type. This will 
allow us to get a better idea of whether generalization drops off as 
the PCI and PLI NNs are over-trained, or whether it improves, or 
stays the same throughout the training process.

6. BENCHMARK RESULTS & DISCUSSION

The general results of the benchmarks are shown in Table-1. The 
values for this table were computed as follows:
Training Average Fitness (TrnAvg) = The average fitness score 
calculated from the 10 evolutionary runs, reached during the last 
generation of the population.
Training Best Fitness (TrnBst) = The highest achieved fitness 
amongst the 10 evolutionary runs for that experiment.
Test Worst Fitness (TstWrst) = The worst generalization/test 
fitness achieved amongst the 10 evolutionary runs.
Test Average (TstAvg) = The average fitness achieved between all 
the evolutionary runs during the generalization/test phase.
Test Standard Deviation (TstStd) = The standard deviation 
calculated from all evolutionary runs during the test phase.
Test Best Fitness (TstBst) = The best fitness achieved amongst the 
10 evolutionary runs during the generalization/test phase.
At the bottom of the table I list the Buy & Hold strategy, and the 
Maximum Possible profit results. The Buy & Hold profits are 
calculated by buying trading the currencies at the very start of the 
training or testing run respectively, and then trading back at the 
end. The best possible profit is calculated by looking ahead and 

trading the currencies only if the profit gained before the trend 
changes will be greater than the spread.

Table 1. Benchmark/Experiment Results

TrnAvg TrnBst Tst
Wrst

TstAvg TstStd TstBst Price Vector 
Sensor Type

540 550 225 298 13 356 [SlidWindow5]

523 548 245 293 16 331 [SlidWindow10]

537 538 235 293 15 353 [SlidWindow20]

525 526 266 300 9 353 [SlidWindow50]

548 558 284 304 14 367 [SlidWindow100]

462 481 214 284 32 346 [ChartPlane5X10]

454 466 232 297 38 355 [ChartPlane5X20]

517 527 180 238 32 300 [ChartPlane10X10]

505 514 180 230 26 292 [ChartPlane10X20]

546 559 189 254 29 315 [ChartPlane20X10]

545 557 212 272 36 328 [ChartPlane20X20]

532 541 235 279 23 323 [ChartPlane50X10]

558 567 231 270 20 354 [ChartPlane50X20]

311 N/A N/A 300 N/A N/A Buy & Hold

N/A 704 N/A N/A N/A 428 Max Possible

First, we note that the generalization results for both, the PCI based 
NNs and PLI based NNs show profit. The profits are also relatively 
significant, thus showing that the application of topology and 
weight evolving artificial neural network systems is viable within 
this field, and warrants significant further exploration in other time 
series analysis applications. For example the highest profit reached 
during generalization, $67 out of the $128 possible when the agent 
started with 300$, making $100 with 50 leverage based trades, 
shows that the agent was able to extract 52% of the available profit. 
This is substantial, but we must keep in mind that though the agents 
were used on real world data, they were still only trading in a 
simulated market. It is only after these agents are allowed to trade 
in real time and using real money, would it be possible to say with 
certainty that these generalization abilities carry over, and for how 
many time-steps before the agents require re-training (In the 
experiment the agents are trained on 800 time steps, and tested on 
the immediately followed 100 time steps). But looking at the table,  
the difference between PLI and PCI based NNs do show some 
strange anomalous. 

The PCI based experiment results are particularly surprising. The 
first thing we notice is that the PCI NN generalization phase's worst 
performers are significantly worse than those of the PLI based NNs. 
The PCI based NNs either generalized well during an evolutionary 
run, or lost significantly. The PLI based NNs mostly kept close to 
300 during generalization test phase when not making profit . Also, 
on average the best of PCI are lower than those produced by PLI 
during generalization. The training fitness scores are comparable 
for both the PCI and PLI NNs. Another observation we can make is 
that higher price resolution (X20 Vs. X10) correlates with the PCI 
NNs to achieving higher profit during generalization testing. And 
finally, we also see that for both PLI and PCI, generalization 
achieved by 5 and 100 based windows price windows is highest.

Based on Table-1, at the face of it, it would seem as if the original 
hypothesis about the effectiveness of PCI NNs, and their expected 
superior generalization was wrong. But this changes if we now plot 
the best training fitness vs evaluations, and the best generalization 
test fitness vs evaluations, as shown in Fig-6.1.

Fig-5.1 A Jordan Recurrent, 4 dimensional substrate encoded NN
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Though difficult to see in the above plot, we can make out that 
though yes the PLI NNs did achieve those generalization fitness 
scores, they were simply blips during the experiment, occurring a 
few times, and then disappearing, diving back under 300. On the 
other hand though, the PCI NNs produced lower profits on average 
when generalization was tested, but they produced those profits 
consistently, they generalized very well. This is easier to see if we 
analyze the graph of PLI Generalization Fitness Vs. Evaluations, 
shown in Fig-6.2, and the PCI Generalization Fitness Vs. 
Evaluations, shown in Fig-6.3.

If we look at SlidingWindow100, produced by plotting the best 
generalization scores from the 10 evolutionary runs of that 
experiment, we see that the score of 367 was achieved briefly, 
between roughly the evaluation number 5000 and 10000. This 
means that there was most likely only a single agent out of all the 
agents, in the 10 evolutionary runs, that achieved this, and then 
only briefly so. On the other hand, we also see that majority of the 
points are at 300, which implies that most of the time, the agents 
did not generalize. And as expected, during the very beginning, 
evaluations 0 to about 3000, there is a lot more activity amongst all 
sliding window resolutions, which produce profits. The most stable 
generalization and thus profitability was shown by SlidingWindow5 
and SlidingWindow100, and we know this because in those 
experiments, there were a lot more fitness scores above 300, 
consistently. From this, we can extract the fact that during all the 
experiments, there are only a few agents that generalize well, and 
do so only briefly, when it comes to PLI based NNs. 

Lets now analyze Fig-6.3, the generalization results for just the PCI 
based NN systems. The story here is very different. Not only there 
are more consistently higher than 300 generalization fitness scores 
in this graph, but also they last throughout the entire 25000 
evaluations. This means that there are more agents that consistently 
generalize, reaching the profitability in this graph. Which gives 
hope that the generalization ability of these PCI NN based systems 
will carry over to real world trading.

When going through raw data, it was usually the case that for every 
PLI NN based experiment, only about 1-2 in 10 evolutionary runs 
had a few agents which generalized for a brief while to scores 
above 320. On the other hand when going through the PCI NN 
based experiments, 3-6 out of 10 evolutionary runs had agents 
generalizing consistently, with scores above 320.

The more conservative PCI NNs are much more consistent. Their 
generalization stays, and if we look at the above figure, we see that 
those PCI NNs that have generalization fitness over 300, usually 
retain it throughout the evaluations. Thus both of the original 
hypothesis are confirmed. 1. Topology and Weight Evolving 
Artificial Neural Networks are indeed useful within this field, and 
their percentage profits are higher than those reported in the 
references papers which used backprop algorithms in optimization 
of static topology based NNs. And 2. Geometrical pattern sensitive, 
price chart input based NNs do work, the NNs learned how to trade 
currencies based on geometrical patterns within the charts, looking 
at the trends and patterns, and were able to generalize much better.  
Thus this new proposed method of evolving geometrical pattern 
sensitive currency trading agents is viable.

But there were a few issues, and when experimenting with PCI 
NNs, problems did show up. First, the standard substrate 
hypercube[6] topologies are layer-to-layer feed forward topologies, 
and fully connected topologies. I did experiment using feedforward 
substrates, but they could not generalize in this domain, and their 
produced fitness scores were bellow 290.  This might be due to 
their ability to memorize, but without any recurrent connections,  
lacking the ability to generalize to previous unseen data, substrate 
topology based anomalies will need to be analyzed in future work. 
Also, the fully connected substrate topologies did not generalize 
with as high a stability as the Jordan Recurrent (JR) topologies used 
in this paper. The results of using feedforward substrates where 
each neurode was recurrently connected to itself did not produce 
results better than a JR substrate either.  

I also noted that the low resolution substrates produce at times 
better results, and do so more often, than their high resolution 

Fig-6.2 PLI based “Generalization Testing Fitness Vs. Evaluations”

Fig-6.1 PLI & PCI based “Training and Testing Fitness Vs. Evaluations” Fig-6.3 PCI based “Generalization Testing Fitness Vs. Evaluations”
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counterparts... This is due to the fact that by increasing the number 
of neurodes in one layer, the neurodes in the postsynaptic layer will  
now have so many inputs that they become saturated, becoming 
unable to function effectively. Scaling and normalizing the 
presynaptic vectors for every neurode  did not seem to improve this 
problem significantly, leaving this anomaly to future work as well. 
These problems make it clear that further experimentation with 
various substrate topologies is a must.

When analyzing the topology of the best performing PLI NNs, it 
was clear that they all had one feature in common, they all had a 
substantial number of recurrent connections. And indeed it was 
those PLI NNs which used the sliding window vectors of size 5 that 
seemed to be better at generalizing, which I believe was due to it 
being difficult for them to evolve simple memorization of signals 
when using such a small sliding window, which required the 
evolution of recurrent connections, and which would then help with 
the ability to generalize. But this is just a hypothesis at the moment.

7. CONCLUSION AND FUTURE WORK

In this paper I presented the performance, profitability, and 
generalization of Price List Input using NNs, directly encoded, and 
the Price Candle-Stick Chart Input using, geometrical pattern  
sensitive NNs. I presented a completely new type (to this author's 
knowledge) of trading and prediction system that uses the actual 
charts of financial instruments as input, thus letting the evolved 
NNs take into account the geometrical patterns of the financial data 
when making predictions and trading. The hypothesis that 
Topology and Weight Evolving Artificial Neural Network 
(TWEANN) systems could effectively evolve currency trading 
agents was shown, based on the generalization results, to be 
correct. Yielding higher profits, and with some agents being able 
to extract as much as 52% of possible profit during generalization 
tests. The hypothesis that geometrical pattern sensitive NN systems 
could indeed trade profitably and generalize much better and more 
consistently than standard PLI NNs proved to be correct. Though 
at the start it seemed as if the PLI NNs generalized better, after 
analyzing Fig-6.2 we saw that there were only a few agents, and 
only for a brief time, which generalized during testing, but they 
rapidly disappeared. While the PCI NNs generalized consistently 
during testing, holding profitability throughout 25000 evaluations.

At the same time I noted that it took a lot of experimentation with 
different types of substrate topologies, and that though Jordan 
Recurrent topology allowed for the substrate encoded NNs to 
generalize, others did not fair as well. Thus, more exploration of 
the various different topologies is needed. Experimentation with 
free-form substrate topology (where the substrates evolve, with new 
neurons being integrated and forming new feedforward and 
recurrent connections over time...) should be undertaken in future 
work. Furthermore, an expanded set of indicators must also be 
included in the next phase of testing the use of geometrical analysis 
based foreign exchange currency trading agents. In this future 
work, we could have the input hyperplanes be composed of 
multiple CPIs, having different time-frames, and showing different  
indicators, and even different currency pairs.

I set out in this paper to show that TWEANN systems have a place 
in evolving financial instrument trading agents, and the presented 
experiments proved this to be a correct hypothesis. I also set out to 
demonstrate a new type of NN based trading agent, one that uses 
the geometrical patterns within the charts to trade currency pairs, 
and the demonstration showed that these type of NNs can indeed 
trade profitably, and generalize better than their standard sliding 
window input based NN counterparts. The fact that this new 
approach is effective, gives me hope that it can be applied 
efficiently to time series analysis in other fields.
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