
<This paper has been submitted for possible publication>

ABSTRACT
Though machine learning has been applied to the foreign exchange
market for algorithmic trading for quiet some time now, and neural
networks(NN) have been shown to yield positive results, in most
modern approaches the NN systems are optimized through
traditional methods like the backpropagation algorithm for
example, and their input signals are price lists, and lists composed
of other technical indicator elements. The aim of this paper is
twofold: the presentation and testing of the application of topology
and weight evolving artificial neural network (TWEANN) systems
to automated currency trading, and to demonstrate the performance
when using Forex chart images as input to geometrical regularity
aware indirectly encoded neural network systems, enabling them to
use the patterns & trends within, when trading. This paper presents
the benchmark results of NN based automated currency trading
systems evolved using TWEANNs, and compares the performance
and generalization capabilities of these direct encoded NNs which
use the standard sliding-window based price vector inputs, and the
indirect (substrate) encoded NNs which use charts as input. The
TWEANN algorithm I will use in this paper to evolve these
currency trading agents is the memetic algorithm based TWEANN
system called Deus Ex Neural Network (DXNN) platform.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence –
Learning, Connectionism and neural nets.

General Terms
Algorithms

Keywords
Neural Network, TWEANN, Evolutionary Computation,
Neuroevolution, Memetic Algorithm, Artificial Life,
Financial Analysis, Forex.

1. INTRODUCTION

oreign exchange (also known as Forex, or FX) is a global and
decentralized financial market for currency trading. It is the

largest financial market, with a daily turnover of 4 trillion US
dollars. The spot market, specializing in the immediate exchange of
currencies, comprises almost 40% of all FX transactions, 1.5
trillion dollars daily. Because the foreign exchange market is open
24 hours a day, closing only for the weekend, and because of the

F

enormous daily volume, there are no sudden interday price changes,
and there are no lags in the market, unlike in the stock market. This
paper presents the first of its kind, an introduction, discussion,
analysis, and application/benchmarking (to the author's knowledge)
of a topology and weight evolving neural network (TWEANN)
algorithm for the evolution of geometry-pattern sensitive, substrate
encoded trading agents that use the actual closing price charts as
input. In this paper I will compare the Price Chart Input (PCI) using
neural network (NN) based traders using substrate encoding, to the
standard, direct encoded NN based trading agents which use Price
List Input (PLI), in which the time series of closing prices is
encoded as a list of said prices. Finally, all of these NN based
trading agents will be evolved using the memetic algorithm based
TWEANN system called Deus Ex Neural Network (DXNN)[1,2]. It
must be noted that it is not the goal of this paper to compare one
TWEANN using PCI to another TWEANN using PCI. The use of
DXNN system for this experiment and this paper was due to the
ease with which it was possible to apply it to the given problem.
The only goal of this paper is to demonstrate the utility of this new
method, the use of candle-stick style chart as direct input to the
geometry sensitive NN system evolved using a TWEANN system.

The use of TWEANNs in the financial market has thus far been
very seldom, and to this author's knowledge, the three most general
of these state of the art neuroevolutionary algorithms (DXNN,
NEAT[3], HyperNEAT[6], EANT[4], EANT2[5]) have not yet been
thoroughly tested, benchmarked, and applied within this field.

In this paper I will not use the evolved NN based agents to predict
currency pair prices, but instead evolve autonomously trading NN
based agents. Neural networks have shown time and time again
[7,8,9,10,11,12,13,14] that due to their highly robust nature, and
universal function approximation qualities, that they fit well in the
application to financial market analysis. In published literature
though[15,17,18,19,20], the most commonly used neural network
learning algorithm is backpropagation. This algorithm, being a
local optimization algorithm, can and does at times get stuck in
local optima. Furthermore, it is usually necessary for the researcher
to set up the NN topology beforehand, and since the knowledge of
what type of NN topology works best for which dataset and market
is very difficult, or even impossible to deduce, one usually has to
randomly create NN topologies and then try them out before
settling down on some particular system. TWEANN systems are
relatively new, and they have not yet been tested thoroughly in
financial markets. But it is exactly these types of systems that can
evolve not only synaptic weights, but also the NN topologies, and
thus perform a global search, evolving the most optimal NN
topology and synaptic weights at the same time. The use of such a
TWEANN system in evolving NN based traders is exactly what
will be explored in this paper.

Outline: In Section-2 I will briefly discuss Foreign Exchange
market, the various market hypothesis, and the approaches that

Evolving Chart Pattern Sensitive Neural
Network Based Forex Trading Agents

Gene I. Sher
CorticalComputer@gmail.com
University of Central Florida

mailto:CorticalComputer@gmail.com

<This paper has been submitted for possible publication>

currency traders use to make their decisions. Section-3 will discuss
how to use candlestick charts themselves as inputs to the NN based
systems, and how to use substrate encoding[6] so that the NNs are
sensitive to geometrical patterns present in these charts. In Section-
4 I will introduce the memetic TWEANN system called DXNN,
and discuss its various features and applicability to price prediction
and automated trading, and how it will be used to evolve the direct
and indirect encoded NN based currency trading agents. In Section-
5 I will explain the benchmark setup for the testing of the PCI and
PLI using NNs, and how I will gage fitness and generalization
abilities of the evolved agents. In Section-6 I will present and
discuss the benchmark results. Finally, in Section-7 I will conclude
this paper with a summary, conclusions drawn, and proposed future
work.

2. FOREIGN EXCHANGE MARKET

The foreign exchange market, or Forex, is a global, fully
distributed, currency trading financial market. Unlike the stock
market where a single buyer or seller with enough capital can
dramatically change the price of the stock, the forex market is
much too vast and distributed for any currency pair to be so easily
affected. Furthermore, the fact that currencies can be traded non
stop, 24 hours a day, 5 days a week, there are a lot fewer spaces in
the data stream where news might be aggregating but no technical
data is available. Because of these factors, there is a greater chance
that the pricing data does indeed represent the incorporated news
and fundamental factors, which might thus allow for prediction and
trend finding through the use of machine learning approaches.

The question of predicting future market prices of a stock, or
currency pairs as is the case in this paper, has been a controversial
one, especially when using machine learning. There are two main
market hypothesis which state that such predictions should be
impossible. These two market hypothesis are the Efficient Market
Hypothesis (EMH), and the Random Walk Theory (RWT).

The EMH states that the prices fully reflect all the available
information, and that all new information is instantly absorbed into
the price, thus it is impossible to make profits in the market since
the prices already reflect the true price of the traded financial
instrument. The RWT on the other hand states that historical data
has no affect on pricing, and that the future price of a financial
instrument is completely random, independent of the past, and thus
it can not be predicted from it. Yet we know that profit is made by
the financial institutions and independent traders in the existing
markets, and that not every individual and institution participating
in the trading of a financial instrument has all the available
information immediately at his disposal when making those trades.
Thus it can not be true that EMH and RWT fully apply in a non
ideal system representing the real world markets. Therefore, with a
smart enough system, some level of prediction above a mere coin
toss, is possible.

There are two general approaches to market speculation, the
technical and the fundamental. Technical analysis is based on the
hypothesis that all reactions of the market to all the news, is
contained within the price of the financial instrument. Thus past
prices can be studied for trends, and used to make predictions of
future prices due to the price data containing all the needed
information about the market and the news that drives it. The
fundamental analysis group on the other hand concentrates on news
and events. The fundamental analyst peruses the news which cause
the prices, he analyzes supply & demand, and other factors, with
the general goal of acting on this information before others do, and
before the news is incorporated into the price. In general of course,
almost every trader uses a combination of both, with the best
results being achieved when both of these analysis approaches are

combined. Nevertheless, in this paper our NN systems will
primarily concentrate only on the raw closing price data. Though in
the future, the use of neuroevolution for news mining is a definite
possibility, and research in this area is already in the works.

3. CREATING A GEOMETRICAL REGULARITY AWARE NEURAL NETWORK

Neural Networks have seen a lot of use and success in the financial
market[17,18,19,20]. One of the main strengths of NN systems,
which makes them so popular as market predictors, is that they are
naturally non linear, and can learn non linear data correlation and
mapping. Artificial neural networks are also data driven, can be on-
line-trained, are adaptive and can be easily retrained when the
markets shift, and finally, they deal well with data that has some
errors; neural networks are robust.

When traders look at the financial data they do not usually look just
at raw price lists, when a trader performs a time series analysis he
instead looks at the chart patterns. This is especially the case when
dealing with a trader prescribing to the technical analysis approach.
The technical analyst uses the various technical indicators to look
for patterns and emerging trends in these charts. There are many
recurrent patterns within the charts, some of which have been given
names, like for example the “head and shoulders” in which the time
series has 3 hills, resembling head and shoulders. Other such
patterns are the “cup and handle”, the “double tops and bottoms”,
the “triangles”... Each of these geometrical patterns has a meaning
to a trader, and is used by the trader to make predictions about the
market. Whether these patterns really do have a meaning or not, is
under debate. It is possible that the fact that so many traders do use
these techniques, results in a self fulfilling prophecy, where a large
number of the traders act similarly when encountering similar
geometrical chart patterns, thus making that pattern and its
consequence a reality, by all acting in a similar manner that is
proscribed by the trend predicting rule of that pattern.

The standard neural networks used for price prediction, trend
prediction, or automated trading, primarily use the sliding window
approach, as shown in Fig-3.1, where the data is fed as a vector, a
price list, to the NN. This vector, whether it holds only the
historical price data, or also various other technical indicators, does
not show these existing geometrical chart patterns which are used
by the traders. If the NN does not have a direct access to the
geometrical patterns used by human traders, it is at a disadvantage
because it does not have all the information on which the other
traders base their decisions.

But how do we allow the NN to have access to this geometrical
pattern data, and also be able to actually use it? We can not simply
convert these charts to bitmaps and feed them to the NN, because
the bitmap encoded chart will still be just a long vector, and the NN
will not only have to deal with an input with high dimensionality

Fig-3.1 Sliding window (moving price list) based input

1.2 1.3 1.35 1.2 1.5 1.4 1.4 1.5 1.4 ...

1.1

1.2

1.3

1.4

1.5

1.6

NN System Prediction

Sliding Window

<This paper has been submitted for possible publication>

(dependent on the resolution of the bitmap), but also there would
really be no connection between this input vector and the actual
geometrical properties of the chart that could be exploited.
A recently popularized indirect NN encoding approach that has
been actively used in computer vision, and which has a natural
property of taking geometrical properties of the input data into
consideration, is the substrate (also known as hypercube) encoded
NN system popularized by the HyperNEAT[6] implementation. In
the substrate encoded NNs, the inputs and outputs are not fed
directly to the neural network, but instead are fed into a substrate,
in which the embedded neurodes (each possessing a coordinate)
processes the signals and produces the outputs, as shown in Fig-3.2.

As shown in the above figure, a substrate is a hypercube of
neurodes, and though in the above figure the dimensionality is 3, it
can be anything. Each neurode in one layer is connected in a
feedforward fashion to the neurodes in the next layer, plane, cube,
or hypercube, depending on the dimensionality of the entire
substrate. All dimensions of the substrate have a cartesian
coordinate, and the length of each side of the substrate is
normalized such that the coordinates for each axis are between -1
and 1. The substrate is impregnated with neurodes, with the number
of neurodes per dimension is set by the researcher, with each
neurode having a coordinate based on its location in its substrate.
With this setup, the weight that each neurode has for the
presynaptic connection with other neurodes is then determined by
the neural network to whom the substrate belongs. It is the neural
network that calculates the synaptic weights for the connected
neurodes based on the coordinates of those neurodes. The and pre
and post-synaptic neurode coordinates are used as input to the NN.
Because the NNs deal with coordinates, with the actual data input
sent to the substrate, the substrate encoded NN system is aware of
the geometric regularities within the input. And it is these
geometric regularities that technical analysis tries to find and
exploit.

With this type of indirect encoded neural network we can analyze
the price charts directly, making use of the geometrical patterns,
and trends within. Because each neurode in the substrate receives a
connection from every neurode or input element in the preceding
hyper-layer, the chart that is fed to the substrate must first be
reconstructed to the resolution that still retains the important
geometrical information, and yet is computationally viable as input.
For example, if the sliding chart that is fed to the substrate is
1000x1000, which represents 1000 historical points (horizontal
axis), with the resolution of the price data being (MaxPlotPrice –
MinPlotPrice)/1000 (the vertical axis), then each neurode in the
first hyperplane of the substrate will have 1000000 inputs. If the
substrate has three dimensions, and we set it up such that the input
signals are plane encoded and located at Z = -1, with a 10X10

neurons in the first neurode plane located at Z = 0, and 1X1
neurons in the third plane located at Z=1 (as shown in Fig-3.3),
then each of the 100 neurons at Z = 0 receives 1000000 inputs, so
each has 1000000 synaptic weights, and for this feedforward
substrate to process a single input signal would require it
100*1000000 + 1*100 calculations, where the 1*100 calculations
are performed by the neuron at Z = 1, which is the output neuron of
the substrate. This means that there would be roughly 100000000
calculations per single input, per single processing price chart.

Thus it is important to determine and test what resolution provides
enough geometrical detail to allow for prediction to be made, yet
not overwhelm the NN itself and the processing power available to
the researcher. Once the length of the historical prices (horizontal
axis on the price chart) and the resolution of the prices (vertical
axis on the price chart) are agreed upon, the chart can then be
generated for the sliding window of currency pair prices, producing
the sliding chart. For example, Fig-3.4A shows a single frame of
the chart whose horizontal and vertical resolution is 100 and 20
respectively, for the EUR/USD closing prices taken at 15 minute
time-frame (pricing intervals). This means that the chart is able to
capture 100 historical prices, from N to N-99, where N is the
current price, and N-99 is the price (99*15)min ago. Thus, if for
example this chart's highest price was $3.00 and the lowest price
was $2.50, and we use a vertical resolution of 20, the minimum
discernible price difference (the vertical of the pixel) is (3-2.5)/20 =
$0.025. For comparison, Fig-3.4B shows a10x10 chart resolution.

Similar to Fig-3.3, in Fig-3.4 the pixels of the background gray are
given a value of -1, the dark gray have a value of 0, and the black a
value of 1. These candlestick charts, though of low resolution,
retain most of the geometrical regularities and high/low pricing
info of the original plot, with the fidelity increasing with the
recreated chart's resolution. It is this input plane that can be fed to
the substrate.

NN

Substrate

Connected Neurode coordinates:
 [X1,Y1,Z1,X2,Y2,Z2]: [-1,1,-1,-1,1,0]

Synaptic Weight: [W]

Sense/
Input

Act/
Output

X

Y

Z
1-1 0

-1

0

1

1
0

-1

N1: [-1,1,-1]

N2: [-1,1,0]

Not all connections are shown

Fig-3.2 The substrate encoded neural network

A. The recreated closing
price chart with an 100x20
resolution.

B. The recreated closing
price chart with a 10x10
resolution for comparison.

Fig-3.4 A. and B. show a 100x20 and 10x10 resolution based charts
respectively, using the candle-stick charting style.

NN

Substrate

Connected Neurode coordinates:
 [X1,Y1,Z1,X2,Y2,Z2]

Synaptic Weight: [W]

Encoding:
Long (1)
Short (-1)
Close (0)

Encoding:
Gray = -1
Dark Gray = 0
Black = 1

X

Y

Z
1-1 0

-1

0

1

1
0

-1

Not all connections are shown

Fig-3.3 A layer-to-layer feedforward substrate processing a 2d chart input

<This paper has been submitted for possible publication>

4. DEUS EX NEURAL NETWORK PLATFORM

The topology and the synaptic weights of the neural networks need
to be set and optimized for the tasks the NNs are applied to. One of
the strongest approaches to the optimization of synaptic weights
and their topologies is through the application of evolutionary
algorithms. The systems that evolve both the topology and the
synaptic weights of neural networks are called Topology and
Weight Evolving Artificial Neural Networks (TWEANN). DXNN
is a memetic algorithm based TWEANN system, and is the
algorithm I will use to evolve the NN based currency trading agents
in this paper. In this section we will briefly discuss DXNN's various
features, and what makes it different from other TWEANNs.

4.1 THE MEMETIC APPROACH TO SYNAPTIC WEIGHT OPTIMIZATION

The standard genetic algorithm performs global and local search in
a single phase. A memetic algorithm separates these two searches
into separate stages. When it comes to neural networks, the global
search is the optimization and evolution of the NN topology, while
the local search is the optimization of the synaptic weights.

Based on the benchmarks, and ALife performance of DXNN[1], the
memetic approach has shown to be highly efficient and agile. The
primary benefit of separating the two search phases is due to the
importance of finding the right synaptic weights for a particular
topology before considering that topology to be unfit. In standard
TWEANNs, a system might generate an optimal topology for the
problem, but because during that one innovation of the new
topology the synaptic weights make the topology ineffective, the
new NN topology is discarded. Also, in most TWEANNs, the
synaptic weight perturbations are applied indiscriminately to all
neurons of the NN, thus if for example a NN is composed of 1
million neurons, and a new neuron is added, the synaptic weight
mutations might be applied to any of the now existing 1000001
neurons... making the probability of optimizing the new and the
right neuron and its synaptic weights, very low. The DXNN
platform evolves a new NN topology, and then through the
application of an augmented stochastic search with random restarts
optimizes the recently added synaptic weights for that topology.
Thus when the “tuning phase”, as is the local search phase is called
in the DXNN platform, has completed, the tuned NN has roughly
the best set of synaptic weights for its particular topological
architecture, and thus the fitness that is given to the NN is a more
accurate representation of that NN's true potential. Furthermore,
because the synaptic weight optimization through perturbation is
not applied to all the neurons indiscriminately throughout the NN,
but instead is concentrated on the newly mutated, augmented, or
mutationally affected neurons, the tuning phase optimizes the new
additions to the NN, making those new elements work with the
existing, already evolved and proven architecture. Combined
together, the DXNN's approach to neuroevolution tends to produce
a more efficient and concise NN systems. The benchmarks in paper
[1] demonstrated it to rapidly evolve neurocontrollers for agents in
the ALife simulation, which gives hope that this neuroevolutionary
system is also powerful enough to produce positive results in this
application, and is the reason DXNN was chosen for this paper.

4.2 THE DXNN NEUROEVOLUTIONARY PROCESS

The DXNN evolutionary algorithm performs the following steps:
1. Create a seed population of topologically minimalistic

NN genotypes.
2. Do:

1. Convert the genotypes to phenotypes.
2. Do for every NN (Apply parametric tuning):

1. Test the fitness of the NN system.
2. Optimize the synaptic weights through the

application of synaptic weight tuning (An

augmented version of stochastic hill-climbing
algorithm).

 Until: The fitness has failed to increased K
 number of times.

3. Convert the NN system back to its genotype,
with the tuned synaptic weights, and its fitness score.

3. After all the NNs have been given a fitness score,
sort the NN agents in the population based on their
fitness score, which is further weighted based on the NN
size, such that smaller sized NNs are given priority.
4. Delete the bottom 50% of the population.
5. For each NN, calculate the total number of N

offspring that it is alloted to produce, where N is
proportional to the NN's fitness as compared to the
average fitness of the population, and average NN
size, where the smaller and more fit NNs are
allowed to create more offspring.

6. Create the offspring by first cloning the fit parent,
and then applying to the clone T number of
mutation operators, where T is randomly chosen to
be between 1 and sqrt(Parent_TotNeurons), with
uniform probability. Larger NNs will produce
offspring which have a chance to be produced
through a larger number of applied mutation
operators.

7. Compose the new population from the fit parents
and their offspring.

Until: Termination condition is reached (Max number
of evaluations, time, or goal fitness).

What in the DXNN is referred to as a “tuning phase” is the local
search phase of the algorithm, which as noted is an augmented
stochastic search algorithm. The topological mutation phase, by
randomly choosing the number of mutation operators to use when
producing offspring by applying the said mutation operators to the
clones of the fit parents, allows for a high variability of topological
mutants to be created, improving the diversity of the population.
The DXNN system uses the following list of mutation operators:

1. Add new neuron.
2. Splice two neurons (choose 2 connected neurons,

disconnect them, and then reconnect them through a
newly created neuron. This also increases the depth of the
NN).

3. Add an output connection to a randomly selected neuron,
recurrent or feedforward.

4. Add an input connection to a randomly selected neuron.
5. Add a sensor
6. Add an actuator

Thus through mutation operators 5 and 6, the offspring might
incorporate into itself new and still unused sensors and actuators, if
those are available in the list of sensors and actuators for its
specie/population. Indeed this particular part of the DXNN acts as a
natural feature selection, and is especially useful for complex
problems, in robotics, and alife simulations. In alife in particular,
as was shown in [1], the organisms were able to evolve and
integrate new sensors over time. This can also be used in robotics,
letting evolution decide what sensors and actuators are most useful
to the evolving individual. But more importantly, this can be used
in evolving algorithmic trades, where Sensors can represent the
different types of technical indicators.

Furthermore, DXNN evolves both, direct and indirect (substrate in
this case) encoded NNs. Where its substrate encoded NNs further
differ in their ability to evolve different types of coordinate based
preprocessors, which is hoped to allow it to deal with a more varied
number of geometrical features, and was another reason for
choosing it in this experiment. A further elaboration on this is
discussed next.

<This paper has been submitted for possible publication>

4.3 DIRECT AND INDIRECT ENCODING

The DXNN platform evolves both direct and indirect encoded NN
systems. The direct encoded NN systems were discussed in the
above sections, the indirect encoded NNs use substrate encoding.
Since it is the substrate that accepts inputs from the environment
and outputs signals to the outside world, and the NN is used to set
the synaptic weights between the neurodes in the substrate, the
system not only has a set of sensors and actuators as in the standard
NN system, but also a set of “coordinate_preprocessors” and
“coordinate_postprocessors”, that are integrated into the NN during
evolution in a similar manner that it integrates new sensors and
actuators, only using the “add_coord_preprocessor” and
“add_coord_postprocessor” mutation operators.

In the standard substrate encoded NN system, the NN is given an
input that is a vector composed of the coordinates of the neurode
for which the synaptic weight must be generated, and the
coordinates of the presynaptic neurode which connects to it. In
DXNN, there are many different types of coordinate_preprocessors
and coordinate_postprocessors available. The
coordinate_preprocessors calculate values from the coordinates
passed before feeding the resulting vector signals to the NN. The
coordinate_postprocessors post process the NN's output, adding
plasticity and other modifications provided by the particular
substrate_actuator incorporated into the system through evolution.

Wheres HyperNEAT which popularized substrate encoding, feeds
the CPNN (a NN that uses tanh, and other types of activation
functions) simply the coordinates of the presynaptic and
postsynaptic neurodes, and in some variants the distance between
the neurodes, the DXNN uses the following list of
coordinate_preprocessors. All of these are available to the substrate
encoded NNs in this paper, and can be integrated and used by the
substrate encoded NN as it evolves:

1. Cartesian Coordinates
2. Cartesian Distance
3. Convert to Polar (if substrate is a plane)
4. Convert to Spherical (if substrate is a cube)
5. Centripetal distance of neurode
6. Distance between coordinates
7. Gaussian processed distance between coordinates

This set of substrate sensors further allow the evolved NN to
extract geometrical patterns and information from inputs. Also,
DXNN allows the evolved neurons to use the following list of
activation functions: [tanh,gaussian,sin,absolute,sgn,linear,log,
sqrt], whether those neurons are used by standard direct encoded
NNs, or NNs used to calculate weights for the substrate encoded
systems. Which the creator of DXNN hopes will further improve
the generality of the evolve NN systems, and has indeed shown
benefit when evolving standard neurocontrollers for the double-
pole balancing benchmark, in which the problems were solved
faster by NNs that used sinusoidal activation functions.

5. THE EXPERIMENTAL SETUP

The 2 goals of this paper is to test the applicability and
effectiveness of TWEANN systems in the evolution of automated
currency trading NN based agents, and the testing and comparison
of the effectiveness/profitability and generalization properties of
the Price List Input (PLI) based NNs, and the Price Chart Input
(PCI) used by geometrical pattern aware substrate encoded NNs.
The hypothesis is that the PCI NNs will have much more
information (Actual geometrical properties of the chart, including
the relative pricing) than the standard PLI based NNs, which do not
have access to the geometrical properties of the charts.

For this benchmark I created a forex market simulator, where each
interfacing NN will be given a $300 starting balance. Each agent
produces an output, with the output being further converted to – 1 if
its less than -0.5, 0 if between -0.5 and 0.5, and 1 if greater than
0.5. When interacting with the forex simulator, -1 means go short, 0
means close position (or do nothing if no position open), and 1
means go long (if currently shorting, then close the position, and
then go long). The Forex simulator will simulate the market using
1000 real EURUSD currency pair closing prices, stretching from
2009-11-5-22:15 to 2009-11-20-10:15, with 15 min time frame
(each closing price is 15 minutes from the other). The simulator
uses a price spread of $0.00015.This 1000 point dataset is split into
the training set, and into a testing/generalization set. The training
set is the first 800 time steps, ranging from: 2009-11-5-22:15 to
2009:11-18-8:15, and the testing/generalization data set is the
immediately following 200 time steps from 2009-11-18-8:15 to
2009-11-20-10:15. Finally, when opening a position, it is always
done with $100, leveraged by x50 to $5000 (due to the use of a flat
spread and buy/sell slots, the results can be scaled).

A single evaluation of a NN is counted if the NN based agent has
went through all the 800 data points, or if its balance dips below
$100. The fitness of the NN is its networth at the end its evaluation.
Each evolutionary run lasts for 25000 evaluations, and each
experiment is composed of 10 such evolutionary runs. In each
experiment the population size was set to 10. Finally, in every
experiment the NNs were allowed to use and integrate through
evolution the following set of activation functions: [tanh, gaussian,
sin, absolute, sgn, linear, log, sqrt]. The remainder of the
parameters were set to the values recommended in [1].

In the experiments performed, the NNs used price sliding window
vectors (for direct encoded NNs), and price charts (for recurrent
substrate encoded NNs) as shown in Fig-5.1. The NNs were also
connected to a sensor which fed them the vector signal:
[Position,Entry,PercentageChange], where Position takes the value
of either -1 (currently shorting), 0 (no position), or 1 (currently
going long), Entry is the price at which the position was entered (or
set to 0 if no position is held), and PercentageChange is the
percentage change in the position since entry.

In this paper I present 13 benchmarks/experiments, each
experiment is composed of 10 evolutionary runs from which its
average/max/min are calculated. The experiments demonstrate and
compare the performance of PCI based NNs and the PLI based
NNs. Both these input type experiments were tested with different
sensors of comparable dimensionality.

• 5 PLI experiments:
Experiments 1-5 were performed using with PLI NNs. Each
experiment differed in the resolution of the sliding window input
the NNs used. Each NN started with the sliding window sensor, and
the vector: [Position, Entry, PercentageChange]. The networks were
allowed to evolve recurrent connections. These 5 experiments are:
1. [SlidingWindow5] 2. [SlidingWindow10] 4. [SlidingWindow20]
4. [SlidingWindow50] 5. [SlidingWindow100]

• 8 PCI experiments:
Experiments 6-13 were preformed using the PCI NNs. In these
experiments each PCI based NN used a 4 dimensional substrate.
The input hyperlayer to the substrate was composed of the price
chart, the vector: [CurrentPosition, EntryPrice, PercentageChange],
and the substrate's own output, making the substrate Jordan
Recurrent. The substrate architecture of these CPI NN based
agents is shown in Fig-5.1. The reason for using Jordan Recurrent
substrates is due to the fact that standard feedforward substrates
which do not have recurrent connections, though achieving high
fitness during training, did not generalize almost at all during my
preliminary experimentation, with the highest achieved balance
during generalization testing phases being $303 (a $3 profit), but

<This paper has been submitted for possible publication>

usually dipping below $250 (a $50 loss) during most evolutionary
runs. Thus for the PCI based NNs, I created a 4 dimensional
substrate (the 4th dimension was called K) with an input hyperplane
composed of the noted 3 planes and located at K = -1, all of which
connected to the 5X5 hidden plane positioned at K = 0, which then
further connected to the 1X1 output plane (a single neurode)
located at K = 1, which output the short/hold/long signal and which
was also fed back to the substrate's input hyperplane. Each of the 10
experiments used price chart inputs of differing resolutions:
1. [ChartPlane5X10], 2. [ChartPlane5X20] 3. [ChartPlane10X10]
4. [ChartPlane10X20] 5. [ChartPlane20X10] 6. [ChartPlane20X20]
7. [ChartPlane50X10] 8. [ChartPlane50X20].

To test generalization abilities of the evolved NN based agents,
every 500 evaluations the best NN in the population at that time is
applied to the 200 data point generalization test. Performing the
generalization tests consistently throughout the evolution of the
population not only tests the generalization ability of the best NN in
the population, but also builds a plot of the general generalization
capabilities of that particular encoding and sensor type. This will
allow us to get a better idea of whether generalization drops off as
the PCI and PLI NNs are over-trained, or whether it improves, or
stays the same throughout the training process.

6. BENCHMARK RESULTS & DISCUSSION

The general results of the benchmarks are shown in Table-1. The
values for this table were computed as follows:
Training Average Fitness (TrnAvg) = The average fitness score
calculated from the 10 evolutionary runs, reached during the last
generation of the population.
Training Best Fitness (TrnBst) = The highest achieved fitness
amongst the 10 evolutionary runs for that experiment.
Test Worst Fitness (TstWrst) = The worst generalization/test
fitness achieved amongst the 10 evolutionary runs.
Test Average (TstAvg) = The average fitness achieved between all
the evolutionary runs during the generalization/test phase.
Test Standard Deviation (TstStd) = The standard deviation
calculated from all evolutionary runs during the test phase.
Test Best Fitness (TstBst) = The best fitness achieved amongst the
10 evolutionary runs during the generalization/test phase.
At the bottom of the table I list the Buy & Hold strategy, and the
Maximum Possible profit results. The Buy & Hold profits are
calculated by buying trading the currencies at the very start of the
training or testing run respectively, and then trading back at the
end. The best possible profit is calculated by looking ahead and

trading the currencies only if the profit gained before the trend
changes will be greater than the spread.

Table 1. Benchmark/Experiment Results

TrnAvg TrnBst Tst
Wrst

TstAvg TstStd TstBst Price Vector
Sensor Type

540 550 225 298 13 356 [SlidWindow5]

523 548 245 293 16 331 [SlidWindow10]

537 538 235 293 15 353 [SlidWindow20]

525 526 266 300 9 353 [SlidWindow50]

548 558 284 304 14 367 [SlidWindow100]

462 481 214 284 32 346 [ChartPlane5X10]

454 466 232 297 38 355 [ChartPlane5X20]

517 527 180 238 32 300 [ChartPlane10X10]

505 514 180 230 26 292 [ChartPlane10X20]

546 559 189 254 29 315 [ChartPlane20X10]

545 557 212 272 36 328 [ChartPlane20X20]

532 541 235 279 23 323 [ChartPlane50X10]

558 567 231 270 20 354 [ChartPlane50X20]

311 N/A N/A 300 N/A N/A Buy & Hold

N/A 704 N/A N/A N/A 428 Max Possible

First, we note that the generalization results for both, the PCI based
NNs and PLI based NNs show profit. The profits are also relatively
significant, thus showing that the application of topology and
weight evolving artificial neural network systems is viable within
this field, and warrants significant further exploration in other time
series analysis applications. For example the highest profit reached
during generalization, $67 out of the $128 possible when the agent
started with 300$, making $100 with 50 leverage based trades,
shows that the agent was able to extract 52% of the available profit.
This is substantial, but we must keep in mind that though the agents
were used on real world data, they were still only trading in a
simulated market. It is only after these agents are allowed to trade
in real time and using real money, would it be possible to say with
certainty that these generalization abilities carry over, and for how
many time-steps before the agents require re-training (In the
experiment the agents are trained on 800 time steps, and tested on
the immediately followed 100 time steps). But looking at the table,
the difference between PLI and PCI based NNs do show some
strange anomalous.

The PCI based experiment results are particularly surprising. The
first thing we notice is that the PCI NN generalization phase's worst
performers are significantly worse than those of the PLI based NNs.
The PCI based NNs either generalized well during an evolutionary
run, or lost significantly. The PLI based NNs mostly kept close to
300 during generalization test phase when not making profit . Also,
on average the best of PCI are lower than those produced by PLI
during generalization. The training fitness scores are comparable
for both the PCI and PLI NNs. Another observation we can make is
that higher price resolution (X20 Vs. X10) correlates with the PCI
NNs to achieving higher profit during generalization testing. And
finally, we also see that for both PLI and PCI, generalization
achieved by 5 and 100 based windows price windows is highest.

Based on Table-1, at the face of it, it would seem as if the original
hypothesis about the effectiveness of PCI NNs, and their expected
superior generalization was wrong. But this changes if we now plot
the best training fitness vs evaluations, and the best generalization
test fitness vs evaluations, as shown in Fig-6.1.

Fig-5.1 A Jordan Recurrent, 4 dimensional substrate encoded NN

NN

A four dimensional substrate

Connected Neurode coordinates:
 [X1,Y1,Z1,K1,X2,Y2,Z2,K2] Synaptic Weight: [W]

Not all connections are shown

K

Z

Y

X

Z

Y

X

Z

Y

X

Price Chart

-1 0 1

[Position,Entry,PercentageChange]

<This paper has been submitted for possible publication>

Though difficult to see in the above plot, we can make out that
though yes the PLI NNs did achieve those generalization fitness
scores, they were simply blips during the experiment, occurring a
few times, and then disappearing, diving back under 300. On the
other hand though, the PCI NNs produced lower profits on average
when generalization was tested, but they produced those profits
consistently, they generalized very well. This is easier to see if we
analyze the graph of PLI Generalization Fitness Vs. Evaluations,
shown in Fig-6.2, and the PCI Generalization Fitness Vs.
Evaluations, shown in Fig-6.3.

If we look at SlidingWindow100, produced by plotting the best
generalization scores from the 10 evolutionary runs of that
experiment, we see that the score of 367 was achieved briefly,
between roughly the evaluation number 5000 and 10000. This
means that there was most likely only a single agent out of all the
agents, in the 10 evolutionary runs, that achieved this, and then
only briefly so. On the other hand, we also see that majority of the
points are at 300, which implies that most of the time, the agents
did not generalize. And as expected, during the very beginning,
evaluations 0 to about 3000, there is a lot more activity amongst all
sliding window resolutions, which produce profits. The most stable
generalization and thus profitability was shown by SlidingWindow5
and SlidingWindow100, and we know this because in those
experiments, there were a lot more fitness scores above 300,
consistently. From this, we can extract the fact that during all the
experiments, there are only a few agents that generalize well, and
do so only briefly, when it comes to PLI based NNs.

Lets now analyze Fig-6.3, the generalization results for just the PCI
based NN systems. The story here is very different. Not only there
are more consistently higher than 300 generalization fitness scores
in this graph, but also they last throughout the entire 25000
evaluations. This means that there are more agents that consistently
generalize, reaching the profitability in this graph. Which gives
hope that the generalization ability of these PCI NN based systems
will carry over to real world trading.

When going through raw data, it was usually the case that for every
PLI NN based experiment, only about 1-2 in 10 evolutionary runs
had a few agents which generalized for a brief while to scores
above 320. On the other hand when going through the PCI NN
based experiments, 3-6 out of 10 evolutionary runs had agents
generalizing consistently, with scores above 320.

The more conservative PCI NNs are much more consistent. Their
generalization stays, and if we look at the above figure, we see that
those PCI NNs that have generalization fitness over 300, usually
retain it throughout the evaluations. Thus both of the original
hypothesis are confirmed. 1. Topology and Weight Evolving
Artificial Neural Networks are indeed useful within this field, and
their percentage profits are higher than those reported in the
references papers which used backprop algorithms in optimization
of static topology based NNs. And 2. Geometrical pattern sensitive,
price chart input based NNs do work, the NNs learned how to trade
currencies based on geometrical patterns within the charts, looking
at the trends and patterns, and were able to generalize much better.
Thus this new proposed method of evolving geometrical pattern
sensitive currency trading agents is viable.

But there were a few issues, and when experimenting with PCI
NNs, problems did show up. First, the standard substrate
hypercube[6] topologies are layer-to-layer feed forward topologies,
and fully connected topologies. I did experiment using feedforward
substrates, but they could not generalize in this domain, and their
produced fitness scores were bellow 290. This might be due to
their ability to memorize, but without any recurrent connections,
lacking the ability to generalize to previous unseen data, substrate
topology based anomalies will need to be analyzed in future work.
Also, the fully connected substrate topologies did not generalize
with as high a stability as the Jordan Recurrent (JR) topologies used
in this paper. The results of using feedforward substrates where
each neurode was recurrently connected to itself did not produce
results better than a JR substrate either.

I also noted that the low resolution substrates produce at times
better results, and do so more often, than their high resolution

Fig-6.2 PLI based “Generalization Testing Fitness Vs. Evaluations”

Fig-6.1 PLI & PCI based “Training and Testing Fitness Vs. Evaluations” Fig-6.3 PCI based “Generalization Testing Fitness Vs. Evaluations”

<This paper has been submitted for possible publication>

counterparts... This is due to the fact that by increasing the number
of neurodes in one layer, the neurodes in the postsynaptic layer will
now have so many inputs that they become saturated, becoming
unable to function effectively. Scaling and normalizing the
presynaptic vectors for every neurode did not seem to improve this
problem significantly, leaving this anomaly to future work as well.
These problems make it clear that further experimentation with
various substrate topologies is a must.

When analyzing the topology of the best performing PLI NNs, it
was clear that they all had one feature in common, they all had a
substantial number of recurrent connections. And indeed it was
those PLI NNs which used the sliding window vectors of size 5 that
seemed to be better at generalizing, which I believe was due to it
being difficult for them to evolve simple memorization of signals
when using such a small sliding window, which required the
evolution of recurrent connections, and which would then help with
the ability to generalize. But this is just a hypothesis at the moment.

7. CONCLUSION AND FUTURE WORK

In this paper I presented the performance, profitability, and
generalization of Price List Input using NNs, directly encoded, and
the Price Candle-Stick Chart Input using, geometrical pattern
sensitive NNs. I presented a completely new type (to this author's
knowledge) of trading and prediction system that uses the actual
charts of financial instruments as input, thus letting the evolved
NNs take into account the geometrical patterns of the financial data
when making predictions and trading. The hypothesis that
Topology and Weight Evolving Artificial Neural Network
(TWEANN) systems could effectively evolve currency trading
agents was shown, based on the generalization results, to be
correct. Yielding higher profits, and with some agents being able
to extract as much as 52% of possible profit during generalization
tests. The hypothesis that geometrical pattern sensitive NN systems
could indeed trade profitably and generalize much better and more
consistently than standard PLI NNs proved to be correct. Though
at the start it seemed as if the PLI NNs generalized better, after
analyzing Fig-6.2 we saw that there were only a few agents, and
only for a brief time, which generalized during testing, but they
rapidly disappeared. While the PCI NNs generalized consistently
during testing, holding profitability throughout 25000 evaluations.

At the same time I noted that it took a lot of experimentation with
different types of substrate topologies, and that though Jordan
Recurrent topology allowed for the substrate encoded NNs to
generalize, others did not fair as well. Thus, more exploration of
the various different topologies is needed. Experimentation with
free-form substrate topology (where the substrates evolve, with new
neurons being integrated and forming new feedforward and
recurrent connections over time...) should be undertaken in future
work. Furthermore, an expanded set of indicators must also be
included in the next phase of testing the use of geometrical analysis
based foreign exchange currency trading agents. In this future
work, we could have the input hyperplanes be composed of
multiple CPIs, having different time-frames, and showing different
indicators, and even different currency pairs.

I set out in this paper to show that TWEANN systems have a place
in evolving financial instrument trading agents, and the presented
experiments proved this to be a correct hypothesis. I also set out to
demonstrate a new type of NN based trading agent, one that uses
the geometrical patterns within the charts to trade currency pairs,
and the demonstration showed that these type of NNs can indeed
trade profitably, and generalize better than their standard sliding
window input based NN counterparts. The fact that this new
approach is effective, gives me hope that it can be applied
efficiently to time series analysis in other fields.

REFERENCES

[1] Sher, G., (preprint): “DXNN Platform: Shedding the Biological
Inefficiencies”, arXiv:1011.6022v3 [cs.NE]

[2] Sher, G., “DXNN: evolving complex organisms in complex
environments using a novel tweann system”, GECCO '11 Proceedings
of the 13th annual conference companion on Genetic and evolutionary
computation.

[3] Stanley, K.O., Miikkulainen, R.: Evolving neural networks through
augmenting topologies. Evolutionary Computation 10(2) (2002) 99–127

[4] Kassahun, Y., Sommer, G.: Efficient reinforcement learning through
evolutionary acquisition of neural topologies. In: Proceedings of the
13th European Symposium on Artificial Neural Networks (ESANN
2005), Bruges, Belgium (2005) 259–266

[5] Nils T Siebel and Sommer, G.: Evolutionary reinforcement learning of
artificial neural networks. International Journal of Hybrid Intelligent
Systems 4(3): 171-183, October 2007.

[6] Gauci, J., Stanley, K.O.: Generating large-scale neural networks through
discovering geometric regularities. In: Proceedings of the 9th annual
conference on Genetic and evolutionary computation. pp. 997–1004.
ACM, New York, NY (2007)

[7] Versace, M., Bhatt, R., Hinds, O., Shiffer, M. “Predicting the exchange
traded fund DIA with a combination of genetic algorithms and neural
networks.” Expert Systems with Applications. 27 (3), pp. 417-425.

[8] Yao, J. and Poh, H.L., “Prediction the KLSE Index Using Neural
Networks.” IEEE International Conference on Artificial neural
networks.

[9] Kimoto, T., Asakawa, K., Yoda, M. and Takeoka, M. (1990). Stock
market prediction system with modular neural networks. In Proceedings
of IJCNN-90.

[10] Hutchinson, James M. Andrew W.Lo and Tomaso Poggio ,“A Non-
Parametric Approach to Pricing and Hedging Derivatives Securities Via
Learning Networks.” , The Journal of Finance, Vol. XLIX, No.3, July.

[11] Refenes , A.N., Bentz, Y. Bunn, D.W., Burgess, A.N. and Zapranis, A.D.
“Financial Time Series Modeling with Discounted Least Squares back
Propagation.”, Neuro Computing Vol. 14, pp.123-138.

[12] Yuhong Li and Weihua Ma , “Applications of Artificial Neural
Networks in Financial Economics: A Survey”, Hangshou, Zhejiang
China.

[13] Rong-Jun Li, Zhi-Bin Xiong, “Prediction stock market with fuzzy neural
networks”, Proceedings of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005.

[14] Jacek Mandziuk and Marcin Jaruszewicz , “Neuro-evolutionary
approach to stock market prediction” , Proceedings of International Joint
Conference on Neural Networks, Orlando, Florida, USA, August 12-17,
2007,IEEE.

[15] Sneha Soni, “Applications of ANNs in Stock Market Prediction: A
Survey” IJCET, 11-02-03.

[16] ALife through DXNN: http://www.youtube.com/user/DXNNsystem?
blend=1&ob=5#p/a/u/1/HzsDZt8EO70

[17] Halbert White,” Economic prediction using neural networks: the case of
IBM daily stock returns” Department of Economics University of
California, San Diego.

[18] Dogac Senol,” Prediction of stock price direction by artificial neural
network approach”, 2008.

[19] Takashi Yamashita, Kotaro Hirasawa, Jinglu Hu , “Application of Multi-
Branch Artificial neural networksto Stock Market Prediction”,
Proceedings of International Joint Conference on Neural Networks,
Montreal, Canada, 2005

[20] Qui-yong Zhao, Xiaoyu Zhao, Fu Duan , “Prediction Model of Stock
Prices Based on Correlative Analysis and Neural Networks” 2009
Second International Conference on Information and Computing
Science , 2009, pp: 189-192 , IEEE.

[21] Brian G. Woolley and Kenneth O. Stanley, “Evolving a Single Scalable
Controller for an Octopus Arm with a Variable Number of Segments”
In: Proceedings of the 11th International Conference on Parallel
Problem Solving From Nature (PPSN 2010). New York, NY: Springer

http://www.youtube.com/user/DXNNsystem?blend=1&ob=5#p/a/u/1/HzsDZt8EO70
http://www.youtube.com/user/DXNNsystem?blend=1&ob=5#p/a/u/1/HzsDZt8EO70
http://www.sigevo.org/gecco-2011/

